Buildings (Aug 2024)

Deformation Effects of Deep Foundation Pit Excavation on Retaining Structures and Adjacent Subway Stations

  • Zhijian Jiang,
  • Shu Zhu,
  • Xiangcheng Que,
  • Xinliang Ge

DOI
https://doi.org/10.3390/buildings14082521
Journal volume & issue
Vol. 14, no. 8
p. 2521

Abstract

Read online

In complex underground conditions, the excavation of deep foundation pits has a significant impact on the deformation of retaining structures and nearby subway stations. To investigate the influence of deep excavation on the deformation of adjacent structures, a three-dimensional numerical model of the foundation pit, existing subway station, and tunnel structure was established using FLAC 3D software, based on the Shenzhen Bay Super Headquarters C Tower foundation pit project. The study analyzed the deformation characteristics of retaining structures, adjacent subway stations, and tunnels during different stages of deep excavation, and the accuracy of the numerical simulation results was validated through field monitoring data. The results indicate that during the excavation process of the foundation pit, the lateral horizontal displacement of the retaining structure is generally small, with a typical “concave inward” lateral deformation curve; the horizontal displacement value of the contiguous wall section is less than that of the interlocking pile section. The bending moments of the retaining structure show a distribution pattern with larger values in the middle and smaller values at the top and bottom of the pit, with a relatively uniform distribution of internal support forces. The maximum displacement of the nearby subway station is 8.75 mm, and the maximum displacement of the subway tunnel is 2.29 mm. The research findings can provide references for evaluating the impact of newly built foundation pits near subway stations and contribute to the rational design and safe construction of new projects.

Keywords