Journal of Aeronautical Materials (Oct 2021)
Microstructure and mechanical properties of wide gap brazing joint of the third-generation nickel-based single crystal superalloy
Abstract
In this study, the third-generation rhenium containing single crystal superalloy was brazed by mixed powder filler, in which the mixed powder filler was consisted of nickel-based powder filler and the superalloy powder with the same composition of the base metal. SEM and EPMA were used to analyze the influence of the proportion of the third-generation single crystal superalloy powder in the mixed filler on the microstructure of the joint, and the high temperature stress rupture properties of the brazed joint with four kinds of solder were tested. The result indicates that the microstructures and phase compositions of the Ni-based powder filler and mixed powder filler are both consisted of γ-Ni, γ′, CrB, Ni3B and M3B2 type boride, but the residue of the mixed powder filler is molten ball-type superalloy. With the thickness of brazing gap constant and increasing the ratio of the third-generation single crystal superalloy powder in the mixed filler, the precipitation of M3B2 type boride and low-melting point phases in the joint can be inhibited, and the distribution of borides becomes more uniform and the size becomes smaller, thus improving the uniformity of the composition and microstructure of the joint. When the proportion of alloy powder increased from 0% to 50%, the endurance life of the joint increased from 15 min to 34 hours. However, when the proportion of alloy powder increased to 60%, there are a lot of void defects in the joint, resulting in the endurance life of the joint decreased to 4 hours.
Keywords