Journal of Fungi (Nov 2023)

Different Putative Methyltransferases Have Different Effects on the Expression Patterns of Cellulolytic Genes

  • Zhongjiao Liu,
  • Kexuan Ma,
  • Xiujun Zhang,
  • Xin Song,
  • Yuqi Qin

DOI
https://doi.org/10.3390/jof9111118
Journal volume & issue
Vol. 9, no. 11
p. 1118

Abstract

Read online

Putative methyltranferase LaeA and LaeA-like proteins, conserved in many filamentous fungi, regulate fungal growth, development, virulence, the biosynthesis of secondary metabolites, and the production of cellulolytic enzymes. Penicillium oxaliucm is a typical fungus that produces cellulolytic enzymes. In this study, we reported the biological function of eight putative methyltransferases (PoMtr23C/D/E/F/G/H and PoMtr25A/B) containing a methyltransf_23 or methyltransf_25 domain, with a focus on their roles in the production of cellulolytic enzymes. In P. oxalicum, various methyltransferase genes displayed different transcriptional levels. The genes Pomtr23C and Pomtr25A exhibited high transcriptional levels, while Pomtr23D/E/F/G/H and Pomtr25B were transcribed constantly at low levels. The gene deletion mutants (Δmtr23C/D/E/F/G/H and Δmtr25A/B) were constructed. Various mutants have different patterns in cellulolytic enzyme production. Compared to the WT, the largest increase in filter paper activity (FPA, indicating total cellulase activity) was observed in the Δmtr23G mutant, the only mutant with a cellulolytic halo surrounding the colony. Three mutants (Δmtr23C/D and Δmtr25A) also showed increased cellulolytic enzyme production. The Δmtr23E and Δmtr25B mutants displayed decreased FPA activity, while the Δmtr23F and Δmtr23H mutants displayed similar patterns of cellulolytic enzyme production compared with the WT. The assay of transcriptional levels of cellobiohydrolase gene Pocbh1 and β-1,4-endoglucanase Poeg1 supported that higher cellulolytic gene transcription resulted in higher production of cellulolytic enzymes, and vice versa. The transcriptional levels of two transcription factors, activator XlnR and repressor CreA, were measured. The high transcription level of the PoxlnR gene in the Δmtr23D mutant should be one reason for the increased transcription of its cellulolytic enzyme gene. Both XlnR and CreA transcriptional levels increased in the Δmtr23G mutant, but the former showed a more significant increase than the latter, indicating that the activation effect predominated. The PoMtr25A is localized in the nucleus. The catalytic subunit SNF2 of the SWI/SNF chromatin-remodeling complex was found as one of the interacting proteins of PoMtr25A via tandem affinity purification coupled with mass spectrometry. PoMtr25A may affect not only the transcription of repressor CreA but also by recruiting SWI/SNF complexes that affect chromatin structure, thereby regulating the transcription of target genes.

Keywords