Dose-Response (Sep 2018)

Optimal LDR to Protect the Kidney From Diabetes: Whole-Body Exposure to 25 mGy X-rays Weekly for 8 Weeks Efficiently Attenuates Renal Damage in Diabetic Mice

  • Jie Cheng,
  • Fengsheng Li,
  • Guanjun Wang,
  • Weiying Guo,
  • Shan Huang,
  • Brian Wang,
  • Cai Li,
  • Qisheng Jiang,
  • Lu Cai,
  • Jiuwei Cui

DOI
https://doi.org/10.1177/1559325818789843
Journal volume & issue
Vol. 16

Abstract

Read online

To explore an optimal frequency of whole-body low-dose radiation (LDR) to protect the kidney from diabetes, type 1 diabetic mice were induced with multiple injections of low-dose streptozotocin in male C57BL/6J mice. Diabetic or age-matched normal mice received whole-body exposure to 12.5 or 25 mGy either every other day or weekly for 4 or 8 weeks. Diabetes decreased the urinary creatinine and increased the microalbumin in urine, renal accumulation of 3-nitrotyrosine and 4-hydroxynonenal, and renal expression of collagen IV and fibronectin. All these renal pathological and functional changes in diabetic mice were significantly attenuated by exposure to LDR at all regimens. However, whole-body exposure of diabetic mice to 25 mGy weekly and to 12.5 mGy every other day for 8 weeks provided a better prevention of diabetic nephropathy than other LDR regimens. Furthermore, whole-body exposure to 25 mGy weekly for 8 weeks showed no detectable effect on the kidney of normal mice, but whole-body exposure to normal mice at 12.5 mGy every other day for 8 weeks increased urinary microalbumin and renal expression of collagen IV and fibronectin. These results suggest that whole-body exposure to LDR at 25 mGy weekly is the optimal condition of LDR to protect the kidney from diabetes.