Frontiers in Microbiology (Sep 2024)

New insights into the structure and function of microbial communities in Maxwell Bay, Antarctica

  • Zheng Wang,
  • Zheng Wang,
  • Zhiwei Gao,
  • Zhiwei Gao,
  • Yong Yu,
  • Yong Yu,
  • Yong Yu,
  • Huirong Li,
  • Huirong Li,
  • Huirong Li,
  • Wei Luo,
  • Wei Luo,
  • Wei Luo,
  • Zhongqiang Ji,
  • Haitao Ding,
  • Haitao Ding,
  • Haitao Ding

DOI
https://doi.org/10.3389/fmicb.2024.1463144
Journal volume & issue
Vol. 15

Abstract

Read online

The microbial communities inhabiting polar ecosystems, particularly in Maxwell Bay, Antarctica, play a pivotal role in nutrient cycling and ecosystem dynamics. However, the diversity of these microbial communities remains underexplored. In this study, we aim to address this gap by investigating the distribution, environmental drivers, and metabolic potential of microorganisms in Maxwell Bay. We analyzed the prokaryotic and eukaryotic microbiota at 11 stations, revealing distinctive community structures and diverse phylum dominance by using high-throughput sequencing. Spatial analysis revealed a significant impact of longitude on microbial communities, with microeukaryotes exhibiting greater sensitivity to spatial factors than microprokaryotes. We constructed co-occurrence networks to explore the stability of microbial communities, indicating the complexity and stability of microprokaryotic communities compared with those of microeukaryotes. Our findings suggest that the microeukaryotic communities in Maxwell Bay are more susceptible to disturbances. Additionally, this study revealed the spatial correlations between microbial communities, diversity, and environmental variables. Redundancy analysis highlighted the significance of pH and dissolved oxygen in shaping microprokaryotic and microeukaryotic communities, indicating the anthropogenic influence near the scientific research stations. Functional predictions using Tax4Fun2 and FUNGuild revealed the metabolic potential and trophic modes of the microprokaryotic and microeukaryotic communities, respectively. Finally, this study provides novel insights into the microbial ecology of Maxwell Bay, expanding the understanding of polar microbiomes and their responses to environmental factors.

Keywords