BMC Neurology (Jul 2024)

Elevated plasma neurofilament light was associated with multi-modal neuroimaging features in Alzheimer’s disease signature regions and predicted future tau deposition

  • Qili Hu,
  • Mengqiu Shi,
  • Yunfei Li,
  • Xiaohu Zhao

DOI
https://doi.org/10.1186/s12883-024-03728-7
Journal volume & issue
Vol. 24, no. 1
pp. 1 – 19

Abstract

Read online

Abstract Background Neurofilament Light (NfL) is a biomarker for early neurodegeneration in Alzheimer’s disease (AD). This study aims to examine the association between plasma NfL and multi-modal neuroimaging features across the AD spectrum and whether NfL predicts future tau deposition. Methods The present study recruited 517 participants comprising Aβ negative cognitively normal (CN-) participants (n = 135), Aβ positive cognitively normal (CN +) participants (n = 64), individuals with amnestic mild cognitive impairment (aMCI) (n = 212), and those diagnosed with AD dementia (n = 106). All the participants underwent multi-modal neuroimaging examinations. Cross-sectional and longitudinal associations between plasma NfL and multi-modal neuro-imaging features were evaluated using partial correlation analysis and linear mixed effects models. We also used linear regression analysis to investigate the association of baseline plasma NfL with future PET tau load. Mediation analysis was used to explore whether the effect of NfL on cognition was mediated by these imaging biomarkers. Results The results showed that baseline NfL levels and the rate of change were associated with Aβ deposition, brain atrophy, brain connectome, glucose metabolism, and brain perfusion in AD signature regions (P<0.05). In both Aβ positive CN and MCI participants, baseline NfL showed a significant predictive value of elevating tau burden in the left medial orbitofrontal cortex and para-hippocampus (β = 0.336, P = 0.032; β = 0.313, P = 0.047). Lastly, the multi-modal neuroimaging features mediated the association between plasma NfL and cognitive performance. Conclusions The study supports the association between plasma NfL and multi-modal neuroimaging features in AD-vulnerable regions and its predictive value for future tau deposition.

Keywords