Scientific Reports (Dec 2023)

Emodin exhibits anti-acne potential by inhibiting cell growth, lipogenesis, and inflammation in human SZ95 sebocytes

  • Si Liu,
  • Xiao-Hua Luo,
  • Yu-Feng Liu,
  • Christos C. Zouboulis,
  • Ge Shi

DOI
https://doi.org/10.1038/s41598-023-48709-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Emodin, a natural anthraquinone derivative, possesses anti-proliferative and anti-inflammatory properties in skin diseases. However, little information is available on the efficacy of emodin in treating acne vulgaris (acne). This study aims to investigate the protective effects and potential mechanisms of emodin as an anti-acne agent. In vitro, SZ95 sebocytes was chose to establish an acneigenic cellular model. We found that emodin effectively inhibited proliferation, induced cell cycle arrest and apoptosis of SZ95 sebocytes in a dose-dependent manner. To evaluate the lipid-lowering potential of emodin, we examined the levels of lipid contents and lipogenic transcription factors, and found that both lipid production and protein expression of PPARγ, LXR α/β, and SREBP-1 were decreased after treatment with emodin. Furthermore, our results revealed that emodin inhibited sebaceous lipogenesis induced by insulin-like growth factor 1 (IGF-1), which was accompanied by a potent inhibition of the phosphoinositide-3-kinase (PI3K)/Akt/forkhead box protein O1 (FoxO1) pathway. In detail, emodin augmented the inhibitory effect of isotretinoin and PI3K inhibitor LY294002, while attenuating the activation of IGF-1 on PI3K/Akt/FoxO1 pathway. In addition, emodin could decrease the secretion of pro-inflammatory cytokines IL-6 and IL-8, and suppress the expression of NLRP3, capase-1, IL-1β, and IL-18 in SZ95 sebocytes exposed to Cutibacterium acnes. Overall, our study provides preliminary evidence supporting the anti-growth, anti-lipogenic and anti-inflammatory properties of emodin, indicating the potential therapeutic application of emodin for acne treatment.