Remote Sensing (Aug 2024)
Wavelength Cut-Off Error of Spectral Density from MTF3 of SWIM Instrument Onboard CFOSAT: An Investigation from Buoy Data
Abstract
The Surface Waves Investigation and Monitoring instrument (SWIM) provides the directional wave spectrum within the wavelength range of 23–500 m, corresponding to a frequency range of 0.056–0.26 Hz in deep water. This frequency range is narrower than the 0.02–0.485 Hz frequency range of buoys used to validate the SWIM nadir Significant Wave Height (SWH). The modulation transfer function used in the current version of the SWIM data product normalizes the energy of the wave spectrum using the nadir SWH. A discrepancy in the cut-off frequency/wavelength ranges between the nadir and off-nadir beams can lead to an overestimation of off-nadir cut-off SWHs and, consequently, the spectral densities of SWIM wave spectra. This study investigates such errors in SWHs due to the wavelength cut-off effect using buoy data. Results show that this wavelength cut-off error of SWH is small in general thanks to the high-frequency extension of the resolved frequency range. The corresponding high-frequency cut-off errors are systematic errors amenable to statistical correction, and the low-frequency cut-off error can be significant under swell-dominated conditions. By leveraging the properties of these errors, we successfully corrected the high-frequency cut-off SWH error using an artificial neural network and mitigated the low-frequency cut-off SWH error with the help of a numerical wave hindcast. These corrections significantly reduced the error in the estimated cut-off SWH, improving the bias, root-mean-square error, and correlation coefficient from 0.086 m, 0.111 m, and 0.9976 to 0 m, 0.039 m, and 0.9994, respectively.
Keywords