Galaxies (Nov 2021)

Third-Generation Calibrations for MeerKAT Observation

  • Viral Parekh,
  • Robert Kincaid,
  • Benjamin Hugo,
  • Athanaseus Ramaila,
  • Nadeem Oozeer

DOI
https://doi.org/10.3390/galaxies9040090
Journal volume & issue
Vol. 9, no. 4
p. 90

Abstract

Read online

Superclusters and galaxy clusters offer a wide range of astrophysical science topics with regards to studying the evolution and distribution of galaxies, intra-cluster magnetization mediums, cosmic ray accelerations and large scale diffuse radio sources all in one observation. Recent developments in new radio telescopes and advanced calibration software have completely changed data quality that was never possible with old generation telescopes. Hence, radio observations of superclusters are a very promising avenue to gather rich information of a large-scale structure (LSS) and their formation mechanisms. These newer wide-band and wide field-of-view (FOV) observations require state-of-the-art data analysis procedures, including calibration and imaging, in order to provide deep and high dynamic range (DR) images with which to study the diffuse and faint radio emissions in supercluster environments. Sometimes, strong point sources hamper the radio observations and limit the achievement of a high DR. In this paper, we have shown the DR improvements around strong radio sources in the MeerKAT observation of the Saraswati supercluster by applying newer third-generation calibration (3GC) techniques using CubiCal and killMS software. We have also calculated the statistical parameters to quantify the improvements around strong radio sources. This analysis advocates for the use of new calibration techniques to maximize the scientific returns from new-generation telescopes.

Keywords