Journal of Dairy Science (Apr 2022)
Formation and characterization of noncovalent ternary complexes based on whey protein concentrate, high methoxyl pectin, and phenolic acid
Abstract
ABSTRACT: Protein-polysaccharide-polyphenol noncovalent ternary complexes possess unique physicochemical, structural, and functional properties. In the present study, ternary complexes based on whey protein concentrate (WPC; 2%, wt/vol) and high methoxyl pectin (HMP; 0.5%, wt/vol) complexes and 0.2 to 0.6% (wt/vol) chlorogenic acid (CA) or rosmarinic acid (RA) were formed and characterized at 3 pH values (4, 4.5, and 5). The pH conditions were decided according to phase diagram of WPC and HMP during acidification. Fluorescence quenching experiments indicated that WPC-HMP complexes bound RA stronger than CA and the binding constant increased with increasing pH for both phenolic acids. Particle size of ternary complexes decreased and absolute ζ-potential increased with pH values changing from 4 to 5, and RA influenced the particle size of WPC-HMP complexes greater than CA. The CA and RA in ternary complexes showed good stability against UV light with pH order of pH 5 > pH 4.5 > pH 4. Fourier-transform infrared spectroscopy spectra indicated the involvement of hydrogen bonding between WPC-HMP and CA or RA. Antibacterial tests showed that ternary complexes had good antibacterial activity against Staphylococcus aureus and Escherichia coli at concentrations of 6.2 mg/mL and the ability increased with decreasing pH values. All ternary complexes possessed strong scavenging radical capacities with median inhibitory concentration (IC50) values ranging from 2.71 ± 0.05 to 6.20 ± 0.41 μg/mL. Antioxidative ability of ternary complexes increased as pH went up and WPC-HMP-RA showed significantly higher antioxidative property compared with WPC-HMP-CA. Data may provide useful information for rational design of ternary complexes and applications of the formed complexes in food matrices such as beverages and emulsions.