Journal of Mathematics (Jan 2021)
An Efficient Modified AZPRP Conjugate Gradient Method for Large-Scale Unconstrained Optimization Problem
Abstract
To find a solution of unconstrained optimization problems, we normally use a conjugate gradient (CG) method since it does not cost memory or storage of second derivative like Newton’s method or Broyden–Fletcher–Goldfarb–Shanno (BFGS) method. Recently, a new modification of Polak and Ribiere method was proposed with new restart condition to give a so-call AZPRP method. In this paper, we propose a new modification of AZPRP CG method to solve large-scale unconstrained optimization problems based on a modification of restart condition. The new parameter satisfies the descent property and the global convergence analysis with the strong Wolfe-Powell line search. The numerical results prove that the new CG method is strongly aggressive compared with CG_Descent method. The comparisons are made under a set of more than 140 standard functions from the CUTEst library. The comparison includes number of iterations and CPU time.