Remote Sensing (Feb 2021)

Potential Driving Factors on Surface Solar Radiation Trends over China in Recent Years

  • Qiuyan Wang,
  • Hua Zhang,
  • Su Yang,
  • Qi Chen,
  • Xixun Zhou,
  • Guangyu Shi,
  • Yueming Cheng,
  • Martin Wild

DOI
https://doi.org/10.3390/rs13040704
Journal volume & issue
Vol. 13, no. 4
p. 704

Abstract

Read online

The annual mean surface solar radiation (SSR) trends under all-sky, clear-sky, all-sky-no-aerosol, and clear-sky-no-aerosol conditions as well as their possible causes are analyzed during 2005–2018 across China based on different satellite-retrieved datasets to determine the major drivers of the trends. The results confirm clouds and aerosols as the major contributors to such all-sky SSR trends over China but play differing roles over sub-regions. Aerosol variations during this period result in a widespread brightening, while cloud effects show opposite trends from south to north. Moreover, aerosols contribute more to the increasing all-sky SSR trends over northern China, while clouds dominate the SSR decline over southern China. A radiative transfer model is used to explore the relative contributions of cloud cover from different cloud types to the all-types-of-cloud-cover-induced (ACC-induced) SSR trends during this period in four typical sub-regions over China. The simulations point out that the decreases in low-cloud-cover (LCC) over the North China Plain are the largest positive contributor of all cloud types to the marked annual and seasonal ACC-induced SSR increases, and the positive contributions from both high-cloud-cover (HCC) and LCC declines in summer and winter greatly contribute to the ACC-induced SSR increases over East China. The contributions from medium-low-cloud-cover (mid-LCC) and LCC variations dominate the ACC-caused SSR trends over southwestern and South China all year round, except for the larger HCC contribution in summer.

Keywords