Actuators (Jul 2025)

Investigation of Hysteresis Phenomena and Compensation in Piezoelectric Stacks for Active Rotor

  • Xiancheng Gu,
  • Weidong Yang,
  • Linghua Dong,
  • Jinlong Zhou

DOI
https://doi.org/10.3390/act14070327
Journal volume & issue
Vol. 14, no. 7
p. 327

Abstract

Read online

An active rotor with trailing edge flaps (TEFs) is an effective method for helicopter vibration elimination. The nonlinear hysteresis of piezoelectric actuators used to drive TEFs can adversely affect helicopter vibration control performance. In this paper, a hysteresis modeling and compensation study is performed for piezoelectric actuators used in TEFs. Firstly, the hysteresis characteristics of a rhombic frame actuator with input voltages at different frequencies are investigated by bench-top tests. Subsequently, the Bouc–Wen model is adopted to establish the hysteresis model of the piezoelectric actuator, with its parameters identified through the particle swarm optimization (PSO) algorithm. Experimental results demonstrate that the proposed model is capable of accurately capturing the hysteresis phenomenon of the piezoelectric actuator within the frequency range of 10–60 Hz. Finally, a compound control regime is established by integrating inverse Bouc–Wen model control with fuzzy PID feedback control. The experimental results indicate that the developed compound control regime can significantly suppress the piezoelectric actuator hysteresis of TEFs within the frequency bandwidth of 10–60 Hz, which lays the foundation for improving the vibration control performance of the active rotor with TEFs in the future.

Keywords