JVS - Vascular Science (Jan 2023)
Different methods of bone marrow harvesting influence cell characteristics and purity, affecting clinical outcomes
Abstract
Background: Bone marrow (BM)-derived stem cells were implanted to induce angiogenesis in patients with no-option critical limb-threatening ischemia. Considering the potential for this therapy, conflicting results related to BM harvesting methods have been reported that could affect stem cell concentrations and quality. Methods: A total of 75 patients with no-option critical limb-threatening ischemia were treated with BM implantation. For 58 patients, BM was harvested using a BM aspirate concentrate system (Harvest Technologies; group HT) with a standard aspiration needle, followed by an automated centrifugation process, to produce BM aspirate concentrate. For 17 patients, BM was harvested using the Marrow Cellution system (Aspire Medical Innovation; group MC). CD34+ cells/mL, CD117+ cells/mL, CD133+ cells/mL, CD309+ cells/mL, hematocrit, and BM purity were compared between the two BM preparations. Results: The retrospective analysis of a subset group after adjustment for age shows that the quality of BM obtained using the Marrow Cellution system is better, in terms of purity, than the classic harvesting method before centrifugation. Harvested BM before centrifugation is characterized by a higher percentage of CD133+ cells compared with BM after centrifugation. In contrast, the MC aspirate had a larger amount of very small embryonic-like cells, as indicated by the higher percentage of CD133+, CD34+, and CD45− cells. These differences translated into an increased occurrence of leg amputations in group HT than in group MC and an increase in transcutaneous oxygen pressure in patients treated with BM aspirated using MC. Conclusions: BM manipulation, such as centrifugation, affects the quality and number of stem cells, with detrimental consequences on clinical outcomes, as reflected by the different amputation rates between the two groups. : Clinical Relevance: Critical limb-threatening ischemia is the most advanced form of peripheral arterial disease with major economic and social effects due to the high amputation rate and mortality. The problem is even greater for diabetic patients, for whom the expected incidence of amputation is ∼40% to 50%. Thus, the need for new therapeutic options is urgent. The present report highlights the striking effects of angiogenic therapy by bone marrow-derived stem cells obtained using a novel technology. We found that the choice of bone marrow harvesting method does influence the clinical outcome; however, further studies are needed. The present study presents a meaningful background for future development.