Opuscula Mathematica (Jan 2014)
Existence and regularity of solutions for hyperbolic functional differential problems
Abstract
A generalized Cauchy problem for quasilinear hyperbolic functional differential systems is considered. A theorem on the local existence of weak solutions is proved. The initial problem is transformed into a system of functional integral equations for an unknown function and for their partial derivatives with respect to spatial variables. The existence of solutions for this system is proved by using a method of successive approximations. We show a theorem on the differentiability of solutions with respect to initial functions which is the main result of the paper.
Keywords