Journal of Cardiovascular Magnetic Resonance (Jul 2020)

Breath-hold and free-breathing quantitative assessment of biventricular volume and function using compressed SENSE: a clinical validation in children and young adults

  • Murat Kocaoglu,
  • Amol S. Pednekar,
  • Hui Wang,
  • Tarek Alsaied,
  • Michael D. Taylor,
  • Mantosh S. Rattan

DOI
https://doi.org/10.1186/s12968-020-00642-y
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 11

Abstract

Read online

Abstract Background Although the breath-hold cine balanced steady state free precession (bSSFP) imaging is well established for assessment of biventricular volumes and function, shorter breath-hold times or no breath-holds are beneficial in children and severely ill or sedated patients. Methods Clinical cardiovascular magnetic resonance (CMR) examinations from September 2019 to October 2019 that included breath-hold (BH) and free-breathing (FB) cine bSSFP imaging accelerated using compressed sensitivity encoding (C-SENSE) factor of 3 in addition to the clinical standard BH cine bSSFP imaging using SENSE factor of 2 were analyzed retrospectively. Patients with structurally normal hearts who could perform consistent BHs were included. Aortic flow measured by phase contrast acquisition was used as a reference for the left ventricular (LV) stroke volume. Comparative analysis was performed for evaluation of biventricular volumes and function, imaging times, quantitative image quality, and qualitative image scoring. Results There were 26 patients who underwent all three cine scans during the study period (16.7 ± 6.4 years, body surface area (BSA) 1.6 ± 0.4 m2, heart rate 83 ± 7 beats/min). BH durations of 8 ± 1 s with C-SENSE = 3 were significantly shorter (p < 0.001) by 33% compared to 12 ± 1 s with SENSE = 2. Actual scan time for BH SENSE (4.9 ± 1.2 min) was comparable to that with FB C-SENSE (5.2 ± 1.5 min; p= NS). Biventricular stroke volume and ejection fraction, and LV mass computed using all three sequences were comparable. There was a small but statistically significant (p < 0.05) difference in LV end-diastolic volume (− 3.0 ± 6.8 ml) between BH SENSE and FB C-SENSE. There was a small but statistically significant (p < 0.005) difference in end-diastolic LV (− 5.0 ± 7.7 ml) and RV (− 6.0 ± 8.5 ml) volume and end-systolic LV (− 3.2 ± 4.3 ml) and RV(− 4.2 ± 6.8 ml) volumes between BH C-SENSE and FB C-SENSE. The LV stroke volumes from all three sequences had excellent correlations (r = 0.96, slope = 0.98–1.02) with aortic flow, with overestimation by 2.7 (5%) to 4.6 (8%) ml/beat. The image quality score was Excellent (16 of 26) to Good (10 of 26) with BH SENSE, Excellent (13 of 26) to Good (13 of 26) with BH C-SENSE, and Excellent (3 of 26) to Good (21 of 26) to Adequate (2 of 26) with FB C-SENSE. Conclusions Image quality and ventricular volumetric and functional indices using either BH or FB C-SENSE cine bSSFP imaging were comparable to standard BH SENSE cine bSSFP imaging while maintaining nominally identical spatio-temporal resolution. This accelerated image acquisition provides an alternative to accommodate patients with impaired BH capacity.

Keywords