Arabian Journal of Chemistry (Nov 2019)

Silver embedded C-TiO2 exhibits improved photocatalytic properties with potential application in waste water treatment

  • Mohamed Elfatih Hassan,
  • Guanglong Liu,
  • Eltigani Osman Musa Omer,
  • Arafat M. Goja,
  • Sadananda Acharya

Journal volume & issue
Vol. 12, no. 7
pp. 1134 – 1140

Abstract

Read online

Non-metal element doping on photocatalysts demonstrates a wide range of disadvantages. Hence metal embedding on nanomaterials is considered to enhance photocatalytic efficiency. In this study, we employed silver nano particle embedding on C-TiO2 photocatalyst to improve its phtotocatytic degradation efficiency of organic water pollutant such as methyl orange. Modified sol-gel methods based on self-assembly technique was used to prepare the nanoformulations. The synthesized nanoparticles were characterized by X-Ray diffraction (XRD), Fourier transforms infrared (FT-IR), Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–vis diffuse reflectance spectroscopy, and photoluminescence spectra (PL). Compared to non-silver formulation (C-TiO2), silver embedded nanomaterial (C-TiO2/Ag) displayed an increased shift in the light absorption towards visible spectrum. A low photoluminescence (PL) intensity by 1 wt% C-TiO2/Ag indicated improved photocatalytic efficiency. Further, higher degradation of organic dye methyl orange confirmed that 1 wt% C-TiO2/Ag exhibited the best photodegradation rate over its non Ag embedded C-TiO2. Embedding of silver on C-TiO2 extends optical absorption edge of C-TiO2 to more visible spectrum and inhibits electron-hole recombination resulting in enhanced photocatalytic activity. Photocatalytic degradation on methyl orange organic pollutant was considerably improved indicating its potential use in water treatment applications. Keywords: C-TiO2/Ag, Photocatalytic properties, Organic pollutant, Water treatment