Annales Mathematicae Silesianae (Jan 2025)

Almost Everywhere Convergence of Varying Parameter Setting Cesàro Means of Fourier Series With Respect to Walsh–Kaczmarz System

  • Adimasu Anteneh Tilahun

DOI
https://doi.org/10.2478/amsil-2025-0001
Journal volume & issue
Vol. 39, no. 2
pp. 190 – 208

Abstract

Read online

In this paper, the almost everywhere convergence of Cesàro means of Walsh–Kaczmarz–Fourier series in a varying parameter setting is investigated. In particular, we define subsequence ℕαn,q{{\mathbb{N}}_{{{\alpha }_{n}},q}} of natural numbers and prove that the maximal operator supn ∈ ℕαn,qσnαnf\underset{n\,\in \,{{\mathbb{N}}_{{{\alpha }_{n}},q}}}{\mathop{\sup }}\,\left| \sigma _{n}^{{{\alpha }_{n}}}f \right| is of strong type (H1, L1), where H1 is a Hardy space.

Keywords