Signals (May 2024)

Electroencephalogram Functional Connectivity Analysis and Classification of Mental Arithmetic Working Memory Task

  • Harshini Gangapuram,
  • Vidya Manian

DOI
https://doi.org/10.3390/signals5020016
Journal volume & issue
Vol. 5, no. 2
pp. 296 – 325

Abstract

Read online

Analyzing brain activity during mental arithmetic tasks provides insight into psychological disorders such as ADHD, dyscalculia, and autism. While most research is conducted on the static functional connectivity of the brain while performing a cognitive task, the dynamic changes of the brain, which provide meaningful information for diagnosing individual differences in cognitive tasks, are often ignored. This paper aims to classify electroencephalogram (EEG) signals for rest vs. mental arithmetic task performance, using Bayesian functional connectivity features in the sensor space as inputs into a graph convolutional network. The subject-specific (intrasubject) classification performed on 36 subjects for rest vs. mental arithmetic task performance achieved the highest subject-specific classification accuracy of 98% and an average accuracy of 91% in the beta frequency band, outperforming state-of-the-art methods. In addition, statistical analysis confirms the consistency of Bayesian functional connectivity features compared to traditional functional connectivity features. Furthermore, the graph-theoretical analysis of functional connectivity networks reveals that good-performance subjects had higher global efficiency, betweenness centrality, and closeness centrality than bad-performance subjects. The ablation study on the classification of three cognitive states (subtraction, music, and memory) achieved a classification accuracy of 97%, and visual working memory (n-back task) achieved a classification accuracy of 94%, confirming the consistency and reliability of the proposed methodology.

Keywords