PLoS ONE (Jan 2019)

Expert predictions of changes in vegetation condition reveal perceived risks in biodiversity offsetting.

  • Josh Dorrough,
  • Steve J Sinclair,
  • Ian Oliver

DOI
https://doi.org/10.1371/journal.pone.0216703
Journal volume & issue
Vol. 14, no. 5
p. e0216703

Abstract

Read online

Biodiversity offsetting typically involves the trade of certain losses of habitat with uncertain future conservation benefits. Predicting the latter requires estimates of two outcomes; the biodiversity losses without conservation management (averted loss), and the biodiversity gains with conservation management (management gain). However, because empirical data to inform these estimates are limited, they are normally guided by expert opinion, often derived via unstructured methods without consideration of uncertainty. Here we used a structured elicitation with 29 experts to gather estimates of averted loss and management gain at offset sites. We used two methods; (i) experts estimated change in an aggregate biodiversity value (vegetation condition) and; (ii) experts provided probabilistic estimates of change for individual vegetation condition attributes, such as the richness and cover of plant growth forms. On average, experts predicted there would be only modest improvements with conservation management, yet uncertainty and variation among experts was large; in some cases, conservation benefits were not predicted. Estimates of change in vegetation condition suggested that benefits were from both averted loss and management gains and were thought to most likely arise in cases where starting condition was low to moderate. Similar patterns were observed for individual vegetation condition attributes, with management gains, relative to a reference, tending to be negatively correlated with starting value. Our study finds that: (i) on average, gains at offset sites are expected to be small, (ii) at many sites, experts do not believe gains can be obtained, and (iii) experts' opinions can be divergent resulting in elevated levels of uncertainty. The potential for losses under conservation management highlights the need to: identify those components of biodiversity most likely to benefit from conservation management; better understand those situations when offset obligations are most likely to be met and conversely those situations with higher risk; and further develop offset mechanisms that encourage early or prior gains. These findings together with the global proliferation of biodiversity offsetting, provide a strong imperative to improve empirical data and investment in long-term, site-based monitoring of biodiversity outcomes at offset sites.