Actuators (Jun 2022)

Electromechanical Performance of Biocompatible Piezoelectric Thin-Films

  • S. Ranjan Mishra,
  • Soran Hassani Fard,
  • Taha Sheikh,
  • Kamran Behdinan

DOI
https://doi.org/10.3390/act11060171
Journal volume & issue
Vol. 11, no. 6
p. 171

Abstract

Read online

The present study analyzed a computational model to evaluate the electromechanical properties of the AlN, BaTiO3, ZnO, PVDF, and KNN-NTK thin-films. With the rise in sustainable energy options for health monitoring devices and smart wearable sensors, developers need a scale to compare the popular biocompatible piezoelectric materials. Cantilever-based energy harvesting technologies are seldom used in sophisticated and efficient biosensors. Such approaches only study transverse sensor loading and are confined to fewer excitation models than real-world applications. The present research analyses transverse vibratory and axial-loading responses to help design such sensors. A thin-film strip (50 × 20 × 0.1 mm) of each sample was examined under volumetric body load stimulation and time-based axial displacement in both the d31 and d33 piezoelectric energy generation modes. By collecting evidence from the literature of the material performance, properties, and performing a validated finite element study to evaluate these performances, the study compared them with lead-based non-biocompatible materials such as PZT and PMN-PT under comparable boundary conditions. Based on the present study, biocompatible materials are swiftly catching up to their predecessors. However, there is still a significant voltage and power output performance disparity that may be difficult to close based on the method of excitation (i.e., transverse, axial, or shear. According to this study, BaTiO3 and PVDF are recommended for cantilever-based energy harvester setups and axially-loaded configurations.

Keywords