International Journal of Coal Science & Technology (Mar 2024)

CO2 capture by modified clinoptilolite and its regeneration performance

  • Bo Jiang,
  • Bo Zhang,
  • Xuqin Duan,
  • Yi Xing

DOI
https://doi.org/10.1007/s40789-023-00661-x
Journal volume & issue
Vol. 11, no. 1
pp. 1 – 10

Abstract

Read online

Abstract This study focuses on CO2 capture by pressure swing adsorption (PSA), with modified clinoptilolite as the adsorbent. Natural clinoptilolite is modified by roasting, by acid pickling, by a combination of acid pickling and roasting, and by ion exchange. Modification by acid pickling–roasting and by ion exchange are found to give the highest CO2 adsorption capacities, of 730 mL/g and 876.7 mL/g, respectively. It is found that regeneration of clinoptilolite by a combination of vacuum desorption and heating enables recovery of as much as 89% of its previous CO2 adsorption capacity. To examine the CO2 adsorption capacity of clinoptilolite when applied to mixed gas, a simulated coking exhaust containing 12% CO2 and 4% O2 is used, and it is found that ion exchange modified clinoptilolite achieves a CO2 removal efficiency of 92.5%. A BET test reveals that acid pickling–roasting and Na+ modification enhance the porosity of clinoptilolite, thereby improving its adsorption capacity. This work demonstrates the feasibility of applying modified clinoptilolite as an effective adsorbent for CO2 capture, providing a promising tool for dealing with greenhouse gases.

Keywords