Ceramics (May 2024)
Utilization of Waste Marble and Bi<sub>2</sub>O<sub>3</sub>-NPs as a Sustainable Replacement for Lead Materials for Radiation Shielding Applications
Abstract
In an attempt to reutilize marble waste, a new approach is presented in the current study to promote its use in the field of shielding against ionizing radiation. In this study, we aimed to develop a novel and sustainable/eco-friendly lead-free radiation shielding material by improving artificial marble (AM) produced from marble waste combined with polyester by reinforcing it with bismuth oxide (Bi2O3) nanoparticles. Six samples of AM samples doped with different concentrations (0%, 5%, 10%, 15%, 20%, and 25%) of Bi2O3 nanoparticles were prepared. The linear attenuation coefficient (LAC) values were measured experimentally through the narrow beam method at different energies (0.0595 MeV, 0.6617 MeV, 1.1730 MeV, and 1.330 MeV) for all samples with various concentrations of Bi2O3. Radiological shielding parameters such as half value layer (HVL), tenth-value layer (TVL), and radiation shielding efficiency (RSE) were estimated and compared for all the different samples. The results prove that increasing the concentration of Bi2O3 leads to the enhancement of the radiation shielding properties of the AM as a shielding material. It was observed that as the energy increases, the efficiency of the samples falls. High energy dependence was found when calculating the HVL and TVL values of the samples, which increased with increases in the energy of the incident photons. A comparison between the sample with the most efficient gamma radiation attenuation capability (AM-25%), concrete, and lead was conducted, and a discussion regarding their radiation shielding properties is presented herein. The results show that the AM-25% sample is superior to the ordinary concrete over all the studied energy ranges, as evidenced by its significantly lower HVLs. On the contrary, lead is superior to the AM-25% sample over all the studied energy ranges owing to its unbeatable density as a shielding material. Overall, this new type of artificial marble has the potential to be used as a radiation shielding material at low- to medium-gamma energy regions, specifically in medical imaging and radiation therapy.
Keywords