Scientific Reports (Apr 2025)
Rapid assembly of biofilms from DNA released by SOS-inducing drugs in enteric bacteria
Abstract
Abstract The SOS response is a bacterial stress response activated by DNA damage in many types of bacteria. SOS-inducing antibiotics trigger the rapid release of DNA into the extracellular medium in many strains. Surprisingly, the DNA released in this way contains greater amounts of single-stranded DNA (ssDNA) than double-stranded DNA (dsDNA). In this study, we observed that addition of DNA-binding proteins following induction of the SOS response in Enterobacter cloacae decreased the amount of DNA measurable in the supernatant medium, but increased the amount of DNA deposited as a biofilm at the air-fluid interface. Bacteria incorporated into the biofilms survived the stress of dessication much better than did planktonic bacteria, with over a 400-fold increase in survival in the biofilm-bound bacteria. SOS-inducing drugs also triggered DNA release in Proteus mirabilis, with ssDNA again being more abundant than dsDNA in the culture supernatants. Addition of urea in this urease-producing organism triggered the formation of struvite crystals (magnesium ammonium phosphate), with the crystals, Proteus bacteria, and extracellular DNA forming mixed biofilms. Last, we tested the effect of inhibitors of the SOS response, such as zinc acetate. We also tested an inhibitor of the generalized stress response, dequalinium, which also indirectly inhibits the SOS response, and found it had a strong ability to inhibit biofilm formation.