Titania-Catalyzed H<sub>2</sub>O<sub>2</sub> Thermal Oxidation of Styrenes to Aldehydes
Satoru Ito,
Yoshihiro Kon,
Takuya Nakashima,
Dachao Hong,
Hideo Konno,
Daisuke Ino,
Kazuhiko Sato
Affiliations
Satoru Ito
Institute for Energy and Material/Food Resources, Technology Innovation Division, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
Yoshihiro Kon
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Takuya Nakashima
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Dachao Hong
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Hideo Konno
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
Daisuke Ino
Institute for Energy and Material/Food Resources, Technology Innovation Division, Panasonic Corporation, 3-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
Kazuhiko Sato
Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
We investigated the selective oxidation of styrenes to benzaldehydes by using a non-irradiated TiO2−H2O2 catalytic system. The oxidation promotes multi-step reactions from styrenes, including the cleavage of a C=C double bond and the addition of an oxygen atom selectively and stepwise to provide the corresponding benzaldehydes in good yields (up to 72%). These reaction processes were spectroscopically shown by fluorescent measurements under the presence of competitive scavengers. The absence of the signal from OH radicals indicates the participation of other oxidants such as hydroperoxy radicals (•OOH) and superoxide radicals (•O2−) into the selective oxidation from styrene to benzaldehyde.