Nanomaterials (Aug 2022)
Improved Ferroelectric Properties in Hf<sub>0.5</sub>Zr<sub>0.5</sub>O<sub>2</sub> Thin Films by Microwave Annealing
Abstract
In the doped hafnia(HfO2)-based films, crystallization annealing is indispensable in forming ferroelectric phases. In this paper, we investigate the annealing effects of TiN/Hf0.5Zr0.5O2/TiN metal-ferroelectric-metal (MFM) capacitors by comparing microwave annealing (MWA) and rapid thermal annealing (RTA) at the same wafer temperature of 500 °C. The twofold remanent polarization (2Pr) of the MWA device is 63 µC/cm2, surpassing that of the RTA device (40 µC/cm2). Furthermore, the wake-up effect is substantially inhibited in the MWA device. The orthorhombic crystalline phase is observed in the annealed HZO films in the MWA and RTA devices, with a reduced TiN and HZO interdiffusion in MWA devices. Moreover, the MFM capacitors subjected to MWA treatment exhibit a lower leakage current, indicating a decreased defect density. This investigation shows the potential of MWA for application in ferroelectric technology due to the improvement in remanent polarization, wake-up effect, and leakage current.
Keywords