BMC Musculoskeletal Disorders (Jul 2024)

Biomechanical evaluation of different medial column fixation patterns for valgus pilon fractures

  • Bing-Hao Wang,
  • Bin-Bin Zhang,
  • Zi-Ling Gong,
  • Jiong Mei,
  • Cong-Feng Luo,
  • Yi Zhu

DOI
https://doi.org/10.1186/s12891-024-07660-2
Journal volume & issue
Vol. 25, no. 1
pp. 1 – 8

Abstract

Read online

Abstract Background The purpose of this study was to perform a biomechanical analysis to compare different medial column fixation patterns for valgus pilon fractures in a case-based model. Methods Based on the fracture mapping, 48 valgus pilon fracture models were produced and assigned into four groups with different medial column fixation patterns: no fixation (NF), K-wires (KW), intramedullary screws (IS), and locking compression plate (LCP). Each group contained wedge-in and wedge-out subgroups. After fixing each specimen on the machine, gradually increased axial compressive loads were applied with a load speed of one millimeter per minute. The maximum peak force was set at 1500 N. Load-displacement curves were generated and the axial stiffness was calculated. Five different loads of 200 N, 400 N, 600 N, 800 N, 1000 N were selected for analysis. The specimen failure was defined as resultant loading displacement over 3 mm. Results For the wedge-out models, Group-IS showed less displacement (p < 0.001), higher axial stiffness (p < 0.01), and higher load to failure (p < 0.001) than Group-NF. Group-KW showed comparable displacement under loads of 200 N, 400 N and 600 N with both Group-IS and Group-LCP. For the wedge-in models, no statistical differences in displacement, axial stiffness, or load to failure were observed among the four groups. Overall, wedge-out models exhibited less axial stiffness than wedge-in models (all p < 0.01). Conclusions Functional reduction with stable fixation of the medial column is essential for the biomechanical stability of valgus pilon fractures and medial column fixation provides the enough biomechanical stability for this kind of fracture in the combination of anterolateral fixation. In detail, the K-wires can provide a provisional stability at an early stage. Intramedullary screws are strong enough to provide the medial column stability as a definitive fixation. In future, this technique can be recommended for medial column fixation as a complement for holistic stability in high-energy valgus pilon fractures.

Keywords