Biomedicine & Pharmacotherapy (May 2023)

Fe-MnO2 nanosheets loading dihydroartemisinin for ferroptosis and immunotherapy

  • Dandan Huang,
  • Dafen Xu,
  • Wenxin Chen,
  • Ruimei Wu,
  • Yujuan Wen,
  • Ailin Liu,
  • Liqing Lin,
  • Xinhua Lin,
  • Xuewen Wang

Journal volume & issue
Vol. 161
p. 114431

Abstract

Read online

Ferroptosis has emerged as a therapeutic tactic to trigger cancer cell death driven by abnormal accumulation of reactive oxygen species (ROS). However, a single ferroptosis treatment modality is often limited. In this work, a combination therapy of ferroptosis and immunotherapy for cancer was proposed. Specifically, a versatile nanodrug was designed for the multiple treatment of hepatocellular carcinoma (HCC) by loading dihydroartemisinin (DHA) on Fe3+-doped MnO2 nanosheets (Fe-MnO2/DHA). Firstly, Fe-MnO2/DHA was degraded by glutathione (GSH) in the tumor microenvironment (TME) to release Fe2+, Mn2+ and DHA, leading to aberrant ROS accumulation due to Fenton/Fenton-like reaction. Secondly, breakage of endoperoxide bridge from DHA was caused by Fe2+ to further induce oxidative stress. Thirdly, the depleted GSH promoted the inactivation of glutathione peroxidase 4 (GPX4), resulting in lipid peroxide (LPO) accumulation. The resulting LPO and ROS could induce ferroptosis and apoptosis of liver cancer cells. Furthermore, Fe-MnO2/DHA mediated three-pronged stimulation of oxidative stress, resulting in high levels of targeted immunogenic cell death (ICD). It could enhance the infiltration of CD4+ T and CD8+ T cells, and promote macrophage polarization. DHA also acted as an immunomodulator to inhibit regulatory T cells (Tregs) for systemic antitumor. Overall, Fe-MnO2/DHA presents a multi-modal therapy for HCC driven by ferroptosis, apoptosis and immune activation, significantly advancing synergistic cancer treatment.

Keywords