Archives of Razi Institute (Feb 2022)
Role of Salvia officinalis Silver Nanoparticles in Attenuation Renal Damage in Rabbits Exposed to Methotrexate
Abstract
Nanomaterials are now considered in an extensive range of applications in various fields such as biotechnology and biomedicine. The present study aimed to investigate the protective role of Salvia officinalis Silver Nanoparticles (SOSNPs) as an anti-oxidant on nephrotic damage induced by methotrexate (MTX) in adult rabbits. Green silver nanoparticles were synthesized using alcoholic extract of Salvia officinalis (S. Officinalis) leaves and were characterized by UV-spectrophotometry and scanning electron microscope. The mixing of the plant extract of S. Officinalis with silver nitrate solution leads to the change of the reaction mixture color to yellowish within 1 h and dark brown after 8 h. For studying the protective role of SOSNPs, a total of 28 adult Wistar albino rabbits were divided into four groups and treated intramuscularly (twice per week) for 45 days as follows: T1: S. Officinalis (150 mg/kg B.W), T2: SOSNPs (150 mg/kg B.W); T3: MTX (0.25 mg/kg B.W) and SOSNPs (150 mg/kg B.W); T4: MTX (0.25 mg/kg B.W). Blood was collected at 0, 15, 30, and 45 days using retro-orbital sinus and cardiac puncture technique, and the serum factors including malondialdehyde (MDA), glutathione (GSH) in serum, creatinine, as well as blood urea nitrogen and uric acid concentrations were measured at the next step. The results indicated that MTX (T4) caused a case of oxidative stress by a significant decrease in GSH and MDA as well as an increase in serum creatinine, urea, and uric acid concentrations. On the other hand, the protective roles of S. Officinalis and SOSNPs given concurrently with MTX were clarified in T2 and T3 groups, where there was the alleviation of renal damage through the correction of the previously mentioned parameters as well as the correction of anti-oxidant status. Finally, the present study documented the anti-oxidant activity and renal protective effects of SOSNPs against the damaging effects of MTX in rabbits.
Keywords