Energies (Mar 2022)

Cardoon Hydrolysate Detoxification by Activated Carbon or Membranes System for Bioethanol Production

  • Ana P. M. Tavares,
  • Matthew J. A. Gonçalves,
  • Teresa Brás,
  • Gaetano R. Pesce,
  • Ana M. R. B. Xavier,
  • Maria C. Fernandes

DOI
https://doi.org/10.3390/en15061993
Journal volume & issue
Vol. 15, no. 6
p. 1993

Abstract

Read online

Advanced biofuels incorporation into the transportation sector, particularly cellulosic bioethanol, is crucial for attaining carbon neutrality by 2050, contributing to climate changes mitigation and wastes minimization. The world needs biofuel to be commercially available to tackle the socioeconomic challenges coming from the continued use of fossil fuels. Cynara cardunculus (cardoon) is a cheap lignocellulosic raw biomass that easily grows in Mediterraneous soils and is a potential renewable resource for a biorefinery. This work aimed to study the bioethanol production from cardoon hemicellulosic hydrolysates, which originated from dilute sulfuric acid hydrolysis pretreatment. A detoxification step to remove released microbial fermentative inhibitors was evaluated by using both activated carbon adsorption and a nanofiltration membrane system. The Scheffersomyces stipitis CBS5773 yeast and the modified Escherichia coli MS04 fermentation performances at different experimental conditions were compared. The promising results with E. coli, using detoxified cardoon by membrane nanofiltration, led to a bioethanol volumetric productivity of 0.30 g·L−1·h−1, with a conversion efficiency of 94.5%. Regarding the S. stipitis, in similar fermentation conditions, volumetric productivity of 0.091 g·L−1·h−1 with a conversion efficiency of 64.9% was obtained. Concluding, the production of bioethanol through detoxification of hemicellulosic cardoon hydrolysate presents a suitable alternative for the production of second-generation bioethanol, especially using the modified E. coli.

Keywords