Advances in Geosciences (Dec 2021)
Storm Anatol over Europe in December 1999: impacts on societal and energy infrastructure
Abstract
Storm Anatol impacted the North Sea and northern Europe on 3–4 December 1999. It brought hurricane force winds to Denmark and northern Germany, and high winds also in Sweden and countries around the Baltic Sea. For many meteorological stations in Denmark, the wind speeds were the highest on record and the storm was ranked as a century event. The storm impacts included extensive forest damage, fatalities, hundreds of injuries, power outages, transportation interruptions, as well as storm surge flooding on the west coast of Denmark. Strongly committed to wind energy, Denmark lost 13 onshore wind turbines destroyed during the storm. An important industry insurer noted that this was a remarkably low number, considering the storm intensity and the large number of turbines (>3500) installed in the country. In 1999, offshore wind energy was just getting started in Europe, and the storm provided an important test of environmental extreme conditions impacting offshore infrastructure. This contribution takes a closer look at the regional met-ocean conditions during the storm. A brief overview is made of the wind field and available wave measurements from the North Sea. An examination is made of water level measurements from around the North Sea to characterize the storm surge and identify possible meteo-tsunamis and infragravity waves. Offshore accidents are briefly discussed to assess if there had been unusual wave strikes on shipping or platforms. At the time of the storm in 1999, there was a growing awareness in the scientific community of possible changes in ambient sea state conditions and the increasing threat of rogue waves. The offshore wind energy community had become aware from the impact of rogue waves from damage at the research platform FINO1 in the southern North Sea during severe storms in 2006, 2007, 2009, and 2013. Storm Anatol may have been another rogue wave storm at an earlier stage of offshore wind energy development.