PLoS ONE (Jan 2019)
One-step synthesis of magnetic-TiO2-nanocomposites with high iron oxide-composing ratio for photocatalysis of rhodamine 6G.
Abstract
In the study, a facile one-step method for synthesizing magnetic-TiO2-nanophotocatalysts was developed. With the same composing ratio of 0.5 and 0.35 (Fe:Ti, mole:mole), we prepared two types of magnetic-TiO2-nanocomposites as one-step synthesized FexOy-composed TiO2 (FexOy/TiO2-0.5 and FexOy/TiO2-0.35) and two-step synthesized core-shell FexOy@TiO2 ([email protected] and [email protected]), and tested their performance in rhodamine 6G (R6G) photodegradation. X-ray diffraction (XRD) analysis showed that [email protected] has the smallest crystallite size (16.8 nm), followed by [email protected] (18.4 nm), FexOy/TiO2-0.35 (21.0 nm) and FexOy/TiO2-0.5 (19.0 nm), and X-ray photoelectron spectroscopy (XPS) suggested the decreasing percentage of Fe3O4 from 52.1% to 36.7%-47.2% after Ti-deposition treatment. The saturated magnetisms followed the order: [email protected] > [email protected] > FexOy/TiO2-0.5 > FexOy/TiO2-0.35. R6G photodegradation followed the first order kinetics and was slightly influenced by pH but significantly affected by initial photocatalyst concentration. FexOy/TiO2-0.35 achieved the highest removal efficiency for R6G (92.5%), followed by [email protected] (88.97%), [email protected] (60.49%) and FexOy/TiO2-0.5 (48.06%). Additionally, all these magnetic-TiO2-nanocomposites had satisfied magnetic recoverability and exhibited laudable reusability after 5-times reuse, even achieving higher R6G removal efficiencies from 97.30% to 98.47%. Our one-step method took only 75 min for nanocomposite synthesis, 90 min less than conventional two-step method, showing its feasibility as a practical method for magnetic-TiO2-nanocomposite synthesis in industrial application.