Near-infrared mechanoluminescence crystals: a review
Puxian Xiong,
Mingying Peng,
Zhongmin Yang
Affiliations
Puxian Xiong
School of Physics and Optoelectronic, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China
Mingying Peng
School of Physics and Optoelectronic, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China; The China-Germany Research Center for Photonic Materials and Device, The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, The School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; Corresponding author
Zhongmin Yang
School of Physics and Optoelectronic, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, South China University of Technology, Guangzhou 510640, China; The China-Germany Research Center for Photonic Materials and Device, The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, The School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China; Corresponding author
Summary: Due to the in situ, real-time, and non-destructive properties, mechanoluminescence (ML) crystals have been considered as intelligent stress sensors, which demonstrate potential applications such as in inner crack visualization, light source, and ultrasonic powder recording. Thereinto, it is highly expected that near-infrared (NIR) MLs can realize the visualization of inner biological stress because mechanically induced signals from them can penetrate biological tissues. However, such an energy conversion technique fails to work in biomechanical monitoring due to the limited advances of NIR ML materials. Based on those, some research groups have begun to focus on this field and initially realized this idea in vitro while related advances are still at the early stage. To advance this field, it is highly desirable to review recent advances in NIR ML crystals. In this review, to our knowledge, all the NIR ML crystals have been included in two main groups: oxysulfides and oxides. Besides, the present and emerging trends in investigation of such crystals were discussed. In all, the aim is to advance NIR ML crystals to more practical applications, especially for that of biomechanical visualization in vivo.