Design of a Nasal Spray Based on <em>Cardiospermum halicacabum</em> Extract Loaded in Phospholipid Vesicles Enriched with Gelatin or Chondroitin Sulfate
Eleonora Casula,
Maria Manconi,
José Antonio Vázquez,
Tania Belen Lopez-Mendez,
José Luis Pedraz,
Esteban Calvo,
Antonio Lozano,
Marco Zaru,
Andreia Ascenso,
Maria Letizia Manca
Affiliations
Eleonora Casula
Department of Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale n. 72, 09124 Cagliari, Italy
Maria Manconi
Department of Scienze della Vita e dell’Ambiente, Sezione di Scienze del Farmaco, University of Cagliari, Via Ospedale n. 72, 09124 Cagliari, Italy
José Antonio Vázquez
Group of Recycling and Valorization of Waste Materials (REVAL), Marine Research Institute (IIM-CSIC), C/Eduardo Cabello, 6, 36208 Vigo, Spain
Tania Belen Lopez-Mendez
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
José Luis Pedraz
NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain
Esteban Calvo
Laboratory for Research in Fluid Dynamics and Combustion Technology (LIFTEC), Consejo Superior de Investigaciones Cientificas (CSIC)–Universidad de Zaragoza, María de Luna, 10, 50018 Zaragoza, Spain
Antonio Lozano
Laboratory for Research in Fluid Dynamics and Combustion Technology (LIFTEC), Consejo Superior de Investigaciones Cientificas (CSIC)–Universidad de Zaragoza, María de Luna, 10, 50018 Zaragoza, Spain
The extract of Cardiospermum halicacabum L. (C. halicacabum) obtained from flower, leaf and vine was loaded into modified phospholipid vesicles aiming at obtaining sprayable, biocompatible and effective nasal spray formulations for the treatment of nasopharyngeal diseases. Penetration enhancer-containing vesicles (PEVs) and hyalurosomes were formulated, and stabilized by adding a commercial gelatin from fish (20 mg/mL) or chondroitin sulfate from catshark cartilages (Scyliorhinus canicula, 20 mg/mL). Cryo-TEM images confirmed the formation of spherical vesicles, while photon correlation spectroscopy analysis disclosed the formation of small and negatively-charged vesicles. PEVs were the smaller vesicles (~100 nm) along with gelatin-hyalurosomes (~120 nm), while chondroitin-PEVs and chondroitin-hyalurosomes were larger (~160 nm). Dispersions prepared with chondroitin sulfate were more homogeneous, as the polydispersity index was ~0.15. The in vitro analysis of the droplet size distribution, average velocity module and spray cone angle suggested a good spray-ability and deposition of formulations in the nasal cavity, as the mean diameter of the droplets was in the range recommended by the Food and Drug Administration for nasal targets. The spray plume analysis confirmed the ability of PEVs, gelatin-PEVs, hyalurosomes and gelatin-hyalurosomes to be atomized in fine droplets homogenously distributed in a full cone plume, with an angle ranging from 25 to 30°. Moreover, vesicles were highly biocompatible and capable of protecting the epithelial cells against oxidative damage, thus preventing the inflammatory state.