Sensors (Oct 2024)
Development and Field Test of Integrated Electronics Piezoelectric Accelerometer Based on Lead-Free Piezoelectric Ceramic for Centrifugal Pump Monitoring
Abstract
In this study, an Integrated Electronics Piezoelectric (IEPE)-type accelerometer based on an environmentally friendly lead-free piezoceramic was fabricated, and its field applicability was verified using a cooling pump owned by the Korea Atomic Energy Research Institute (KAERI). As an environmentally friendly piezoelectric material, 0.96(K,Na)NbO3-0.03(Bi,Na,K,Li)ZrO3-0.01BiScO3 (0.96KNN-0.03BNKLZ-0.01BS) piezoceramic with an optimized piezoelectric charge constant (d33) was introduced. It was manufactured in a ring shape using a solid-state reaction method for application to a compression mode accelerometer. The fabricated ceramic ring has a high piezoelectric constant d33 of ~373 pC/N and a Curie temperature TC of ~330 °C. It was found that the electrical and physical characteristics of the 0.96KNN-0.03BNKLZ-0.01BS piezoceramic were comparable to those of a Pb(Zr,Ti)O3 (PZT) ring ceramic. As a result of a vibration test of the IEPE accelerometer fabricated using the lead-free piezoelectric ceramic, the resonant frequency fr = 20.0 kHz and voltage sensitivity Sv = 101.1 mV/g were confirmed. The fabricated IEPE accelerometer sensor showed an excellent performance equivalent to or superior to that of a commercial IEPE accelerometer sensor based on PZT for general industrial use. A field test was carried out to verify the applicability of the fabricated sensor in an actual industrial environment. The test was conducted by simultaneously installing the developed sensor and a commercial PZT-based sensor in the ball bearing housing location of a centrifugal pump. The centrifugal pump was operated at 1180 RPM, and the generated vibration signals were collected and analyzed. The test results confirmed that the developed eco-friendly lead-free sensor has comparable vibration measurement capability to that of commercial PZT-based sensors.
Keywords