Applied Sciences (Oct 2021)

Extraction of City Roads Using Luojia 1-01 Nighttime Light Data

  • Luyao Wang,
  • Hao Zhang,
  • Haiyan Xu,
  • Anfeng Zhu,
  • Hong Fan,
  • Yankun Wang

DOI
https://doi.org/10.3390/app112110113
Journal volume & issue
Vol. 11, no. 21
p. 10113

Abstract

Read online

The extraction of a road network is critical for city planning and has been widely studied in previous research using high resolution images, whereas the high cost of high-resolution remote sensing data and the complexity of its analysis also cause huge challenges for the extraction. The successful launch of a high resolution (130 m) nighttime remote sensing satellite, Luojia 1-01, provides great potential in the study of urban issues. This study attempted to extract city roads using a Luojia 1-01 nighttime lighting image. The urban regions were firstly distinguished through a threshold method. Then, an unsupervised PCNN (pulse coupled neural network) was established to extract the road networks in urban regions. A series of optimizing methods was proposed to enhance the image contrast and eliminate the residential regions along the roads. The final extraction results after optimizing were compared with OSM (OpenStreetMap) data, showing the high precision of the proposed approach with the accuracy rate reaching 83.2%. We also found the precision of city centers to be lower than suburban regions due to the influence of intensive human activities. Our study confirms the potential of Luojia 1-01 data in the extraction of city roads and provides new thought for more complex and microscopic study of city issues.

Keywords