Optics (Jun 2025)
Experimental Observation of Laser Planar Trapping
Abstract
This study experimentally demonstrates transverse symmetry breaking—a mechanism governing laser planar trapping—and distinguishes its unique role from related phenomena such as the lateral Goos–Hänchen shift and angular deviations. While the latter effects describe positional or angular beam displacements at interfaces, transverse symmetry breaking fundamentally alters the beam’s spatial symmetry, enabling unprecedented control over its intensity and phase profiles. Empirical results exhibit exceptional agreement with a recently proposed theoretical model, validating its predictive capability. Crucially, our findings highlight transverse symmetry breaking as a critical tool for tailoring beam profiles, advancing applications in optical trapping, structured light systems, and photonic device engineering, where symmetry manipulation unlocks new degrees of freedom in light–matter interactions.
Keywords