Computation (Aug 2022)

Assessing Traffic Congestion Hazard Period due to Commuters’ Home-to-Shopping Center Departures after COVID-19 Curfew Timings

  • Majed Alinizzi,
  • Husnain Haider,
  • Mohammad Alresheedi

DOI
https://doi.org/10.3390/computation10080132
Journal volume & issue
Vol. 10, no. 8
p. 132

Abstract

Read online

In addition to a wide range of socio-economic impacts, traffic congestion during the era of the COVID-19 pandemic has been identified as a critical issue to be addressed. In urban neighborhoods, the timespan of traffic congestion hazard (HTC) after the curfew lift is subjected to the commuters’ decisions about home-to-shopping center departures. The decision for departing early or late for shopping depends on both the internal (commuter related) and external (shopping center related) factors. The present study developed a practical methodology to assess the HTC period after the curfew timings. An online questionnaire survey was conducted to appraise the commuters’ perception about departure time and to assess the impact of eight internal (family size, involvement in other activities, nature of job, education level, age, number of vehicles, number of children, and availability of personal driver) and three external (availability of shopping center of choice in near vicinity, distance to shopping center, and size of the city) factors on their decision. With an acceptable 20% response rate, Chi-square and Cramer’s V tests ascertained family size and involvement in other activities as the most significant internal factors and availability of shopping center of choice as the primary external factor. Age, number of children, and size of the city influenced to some extent the commuters’ decisions about early or delayed departure. Large associations were found for most of the factors, except education level and availability of drivers in a household. Fuzzy synthetic evaluation (FSE) first segregated the commuters’ responses over a four level-rating system: no delay (0), short delay (1), moderate delay (3), and long delay (5). Subsequently, the hierarchical bottom-up aggregation effectively determined the period of highest traffic congestion. Logical study findings revealed that most (about 65%) of the commuters depart for shopping within 15 min after the curfew lift, so HTC in the early part (the first one hour) of the no curfew period needs attention. The traffic regulatory agencies can use the proposed approach with basic socio-demographic data of an urban neighborhood’s residents to identify the HTC period and implement effective traffic management strategies accordingly.

Keywords