Scientific Reports (May 2023)

β-adrenergic receptor agonist promotes ductular expansion during 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced chronic liver injury

  • Naoki Tanimizu,
  • Norihisa Ichinohe,
  • Toshihiro Mitaka

DOI
https://doi.org/10.1038/s41598-023-33882-w
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 12

Abstract

Read online

Abstract Intrahepatic nerves are involved in the regulation of metabolic reactions and hepatocyte-based regeneration after surgical resection, although their contribution to chronic liver injury remains unknown. Given that intrahepatic nerves are abundant in the periportal tissue, they may be correlated also with cholangiocyte-based regeneration. Here we demonstrate that isoproterenol (ISO), a β-adrenergic receptor agonist, promoted ductular expansion induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in vivo. Immunofluorescence analysis shows that nerve fibers positive for tyrosine hydroxylase form synaptophysin-positive nerve endings on epithelial cell adhesion molecule-positive (EpCAM+) cholangiocytes as well as on Thy1+ periportal mesenchymal cells (PMCs) that surround bile ducts, suggesting that the intrahepatic biliary tissue are targeted by sympathetic nerves. In vitro analyses indicate that ISO directly increases cAMP levels in cholangiocytes and PMCs. Mechanistically, ISO expands the lumen of cholangiocyte organoids, resulting in promotion of cholangiocyte proliferation, whereas it increases expression of fibroblast growth factor 7, a growth factor for cholangiocytes, in PMCs. Taken together, the results indicate that intrahepatic sympathetic nerves regulate remodeling of bile ducts during DDC-injury by the activation of β-adrenergic receptors on cholangiocytes and PMCs.