Physiological Reports (May 2022)
Right ventricular myocardial energetic model for evaluating right heart function in pulmonary arterial hypertension
Abstract
Abstract Background Pulmonary arterial hypertension (PAH) increases right ventricular (RV) workload and decreases myocardial oxygen reserve, eventually leading to poor cardiac output. This study created and assessed a novel model of RV work output based on RV hemodynamics and oxygen supply, allowing new insight into causal mechanisms of RV dysfunction. Methods The RV function model was built upon an earlier, left ventricular model and further adjusted for more accurate clinical use. The model assumes that RV total power output (1) is the sum of isovolumic and stroke power and (2) is linearly related to its right coronary artery oxygen supply. Thus, when right coronary artery flow is limited or isovolumic power is elevated, less energy is available for producing cardiac output. The original and adjusted models were validated via data from patients with idiopathic PAH (n = 14) and large animals (n = 6) that underwent acute pulmonary banding with or without hypoxia. Results Both models demonstrated strong, significant correlations between RV oxygen consumption rate and RV total power output for PAH patients (original model, R2 = 0.66; adjusted model, R2 = 0.78) and sheep (original, R2 = 0.85; adjusted, R2 = 0.86). Furthermore, the models demonstrate a significant inverse relationship between required oxygen consumption and RV efficiency (stroke power/total power) (p < 0.001). Lastly, higher NYHA class was indicative of lower RV efficiency and higher oxygen consumption (p = 0.013). Conclusion Right ventricular total power output can be accurately estimated directly from pulmonary hemodynamics and right coronary perfusion during PAH. This model highlights the increased vulnerability of PAH patients with compromised right coronary flow coupled with high afterload.
Keywords