Нанотехнологии в строительстве (Aug 2024)

Nanostructural changes in the components of chrysotilecement dust under the influence of different levels of acidity and exposure time

  • Sergey V. Klyuev,
  • Lyudmila N. Naumova,
  • Igor V. Nedoseko,
  • Alexander V. Klyuev,
  • Elena S. Shorstova

DOI
https://doi.org/10.15828/2075-8545-2024-16-4-361-374
Journal volume & issue
Vol. 16, no. 4
pp. 361 – 374

Abstract

Read online

Introduction. The article considers the issue of modifying the initial chrysotile fiber and its bundles by the action of hydration products of Portland cement and various acidity value of the treated medium. A brief justification of the relevance of the research topic is provided. It is noted that recently, issues of production of composite materials based on natural and man-made raw materials, which are a promising area of modern economics, have aroused great scientific and practical interest. The availability and low cost of raw materials, as well as low energy, transportation, and overhead costs, contribute to reducing the cost of composite materials. At the same time, the high contractual prices and strong demand in both domestic and foreign markets provide incentives for increasing production volumes. The aim of the research is to study the behavior of the initial chrysotile fibers and their aggregates in the composition of the cement component under the influence of different acidity of the treated medium. Research objective: to investigate the behavior of chrysotile cement dust components under an aggressive environmental condition with electron microscopy examination; calculation of the number and dimensional characteristics of nanofibers and dust particles under the influence of various exposure times of the aggressive factor; microdifraction studies of the nanostructure of the studied samples after exposure to acidic media. Materials and methods. The materials used in the research and their characteristics are given, in particular, chrysotile cement dust containing fibers of commercial chrysotile, acidity of the medium, exposure time, micro- and nanofibers obtained after exposure to aggressive medium. Samples of chrysotile cement dust were taken at the slate production No.1 of JSC “BelACI” and collected at the place of sawing of chrysotile cement products, underwent the stage of dispersion using a centrifugal separator. In the work chrysotile cement dust was used as an object of environmental pollution and its further use in the production of composite chrysotile cement products. Results. The results of studies on the influence of aggressive environment on the components of chrysotile-cement dust, their size characteristics, and structural nano-changes are presented. The studied samples have been examined in a scanning ion-electron microscope at magnifications of 200x, 500x, 5000x, 10000x, and their chemical composition have been analyzed. Discussion. The results of analysis of the obtained experimental data are given. Quantitative composition of fibers and aggregates of fibers in chrysotile cement dust changes after its exposure in acidic medium in comparison with their quantity in initial chrysotile cement dust, and the quantity of separate thin fibers increases, it is explained by the fact that in acidic medium there is not only destruction of cement stone, but also splitting of bundles of chrysotile fibers into micro- and nanofibers. Conclusions. Electron microscopic examination of initial commercial chrysotile fibers and their bundles in cement dust have shown changes in their dimensional and quantitative characteristics, including the products of Portland cement hydration under the influence of the factor of aggressiveness of the environment

Keywords