Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands; Department of Chemistry, Technical University of Munich, Garching, Germany
Dymytrii Listunov
SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France; LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
Pauline Rullière
SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
Cécile Barthes
LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
Céline Noirot
INRAE, UR 875 Unité de Mathématique et Informatique Appliquées, Genotoul Bioinfo Auzeville, Castanet-Tolosan, France
Jean-Baptiste Izquierdo
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
Alexandrine Rozié
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France; Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
Karen Pradines
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France; Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
Romain Hee
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France; Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
Maria Vieira de Brito
LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France; Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
Marlène Marcellin
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
Remy-Felix Serre
INRAE, US 1426 GeT-PlaGe, F-31326, Castanet-Tolosan, France
Olivier Bouchez
INRAE, US 1426 GeT-PlaGe, F-31326, Castanet-Tolosan, France
Odile Burlet-Schiltz
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France
Maria Conceição Ferreira Oliveira
Department of Organic and Inorganic Chemistry, Science Center, Federal University of Ceará, Fortaleza, Brazil
SPCMIB, UMR5068, CNRS, Université de Toulouse, UPS, Toulouse, France
Vania Bernardes-Génisson
LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
Valérie Maraval
LCC-CNRS, Université de Toulouse, CNRS, UPS, Toulouse, France
Patrick Calsou
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France; Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
Stephan M Hacker
Leiden Institute of Chemistry, Leiden University, Leiden, Netherlands; Department of Chemistry, Technical University of Munich, Garching, Germany
Institut de Pharmacologie et de Biologie Structurale, IPBS, CNRS, Université de Toulouse, Toulouse, France; Equipe labellisée la Ligue contre le Cancer 2018, Toulouse, France
Hundreds of cytotoxic natural or synthetic lipidic compounds contain chiral alkynylcarbinol motifs, but the mechanism of action of those potential therapeutic agents remains unknown. Using a genetic screen in haploid human cells, we discovered that the enantiospecific cytotoxicity of numerous terminal alkynylcarbinols, including the highly cytotoxic dialkynylcarbinols, involves a bioactivation by HSD17B11, a short-chain dehydrogenase/reductase (SDR) known to oxidize the C-17 carbinol center of androstan-3-alpha,17-beta-diol to the corresponding ketone. A similar oxidation of dialkynylcarbinols generates dialkynylketones, that we characterize as highly protein-reactive electrophiles. We established that, once bioactivated in cells, the dialkynylcarbinols covalently modify several proteins involved in protein-quality control mechanisms, resulting in their lipoxidation on cysteines and lysines through Michael addition. For some proteins, this triggers their association to cellular membranes and results in endoplasmic reticulum stress, unfolded protein response activation, ubiquitin-proteasome system inhibition and cell death by apoptosis. Finally, as a proof-of-concept, we show that generic lipidic alkynylcarbinols can be devised to be bioactivated by other SDRs, including human RDH11 and HPGD/15-PGDH. Given that the SDR superfamily is one of the largest and most ubiquitous, this unique cytotoxic mechanism-of-action could be widely exploited to treat diseases, in particular cancer, through the design of tailored prodrugs.