International Journal of Nanomedicine (Jan 2015)

Physicochemical properties, cytotoxicity, and antimicrobial activity of sulphated zirconia nanoparticles

  • Mftah A,
  • Alhassan FH,
  • Al-Qubaisi MS,
  • El Zowalaty ME,
  • Webster TJ,
  • Sh-eldin M,
  • Rasedee A,
  • Taufiq-Yap YH,
  • Rashid SS

Journal volume & issue
Vol. 2015, no. default
pp. 765 – 774

Abstract

Read online

Ae Mftah,1 Fatah H Alhassan,2,3 Mothanna Sadiq Al-Qubaisi,4 Mohamed Ezzat El Zowalaty,4 Thomas J Webster,5,6 Mohammed Sh-eldin,7 Abdullah Rasedee,8 Yun Hin Taufiq-Yap,2,3 Shah Samiur Rashid1 1Department of Chemistry, Faculty of Industrial Sciences and Technology, University Malaysia Pahang, Malaysia; 2Catalysis Science and Technology Research Centre, 3Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Selangor, Malaysia; 4Institute of Bioscience, University Putra Malaysia, Serdang, Selangor, Malaysia; 5Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 6Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia; 7Solar Energy Research Institute, University Kebangsaan Malaysia, Selangor, 8Faculty of Veterinary Medicine, Universiti Putra Malaysia, Selangor, Malaysia Abstract: Nanoparticle sulphated zirconia with Brønsted acidic sites were prepared here by an impregnation reaction followed by calcination at 600°C for 3 hours. The characterization was completed using X-ray diffraction, thermal gravimetric analysis, Fourier transform infrared spectroscopy, Brunner-Emmett-Teller surface area measurements, scanning electron microscopy with energy dispersive X-ray spectroscopy, and transmission electron microscopy. Moreover, the anticancer and antimicrobial effects were investigated for the first time. This study showed for the first time that the exposure of cancer cells to sulphated zirconia nanoparticles (3.9–1,000 µg/mL for 24 hours) resulted in a dose-dependent inhibition of cell growth, as determined by (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assays. Similar promising results were observed for reducing bacteria functions. In this manner, this study demonstrated that sulphated zirconia nanoparticles with Brønsted acidic sites should be further studied for a wide range of anticancer and antibacterial applications. Keywords: sulphated zirconia, nanoparticles, antimicrobial, anticancer