Materials (Aug 2019)

Surface Modification of Pure Magnesium Mesh for Guided Bone Regeneration: In Vivo Evaluation of Rat Calvarial Defect

  • Shuang Wu,
  • Yong-Seok Jang,
  • Yu-Kyoung Kim,
  • Seo-Young Kim,
  • Seung-O Ko,
  • Min-Ho Lee

DOI
https://doi.org/10.3390/ma12172684
Journal volume & issue
Vol. 12, no. 17
p. 2684

Abstract

Read online

Guided bone regeneration is a therapeutic method that uses a barrier membrane to provide space available for new bone formation at sites with insufficient bone volume. Magnesium with excellent biocompatibility and mechanical properties has been considered as a promising biodegradable material for guided bone regeneration; however, the rapid degradation rate in the physiological environment is a problem to be solved. In this study, surface modification of pure magnesium mesh was conducted by plasma electrolytic oxidation and hydrothermal treatment to form a densely protective layer on the Mg substrate. The protective layer mainly consisted of Mg(OH)2 with the amorphous calcium phosphate. Then, weight loss measurement and Micro-CT imaging were performed after an immersion test in a simulated body fluid. The effect of surface modification of the magnesium mesh on the guided bone regeneration was evaluated through an in vivo test using the rat calvarial defect model. The biodegradation of the magnesium mesh was identified to be significantly retarded. Additionally, the surface modification of Mg also can improve the bone volume and bone density of calvarial defect in comparison with that of the pristine Mg mesh.

Keywords