Marine Drugs (May 2018)

Dietary Polysaccharide from Enteromorpha Clathrata Modulates Gut Microbiota and Promotes the Growth of Akkermansia muciniphila, Bifidobacterium spp. and Lactobacillus spp.

  • Qingsen Shang,
  • Ya Wang,
  • Lin Pan,
  • Qingfeng Niu,
  • Chao Li,
  • Hao Jiang,
  • Chao Cai,
  • Jiejie Hao,
  • Guoyun Li,
  • Guangli Yu

DOI
https://doi.org/10.3390/md16050167
Journal volume & issue
Vol. 16, no. 5
p. 167

Abstract

Read online

Recently, accumulating evidence has suggested that Enteromorpha clathrata polysaccharide (ECP) could contribute to the treatment of diseases. However, as a promising candidate for marine drug development, although ECP has been extensively studied, less consideration has been given to exploring its effect on gut microbiota. In this light, given the critical role of gut microbiota in health and disease, we investigated here the effect of ECP on gut microbiota using 16S rRNA high-throughput sequencing. As revealed by bioinformatic analyses, ECP considerably changed the structure of the gut microbiota and significantly promoted the growth of probiotic bacteria in C57BL/6J mice. However, interestingly, ECP exerted different effects on male and female microbiota. In females, ECP increased the abundances of Bifidobacterium spp. and Akkermansia muciniphila, a next-generation probiotic bacterium, whereas in males, ECP increased the population of Lactobacillus spp. Moreover, by shaping a more balanced structure of the microbiota, ECP remarkably reduced the antigen load from the gut in females. Altogether, our study demonstrates for the first time a prebiotic effect of ECP on gut microbiota and forms the basis for the development of ECP as a novel gut microbiota modulator for health promotion and disease management.

Keywords