PLoS ONE (Jan 2013)

SPAK deficiency corrects pseudohypoaldosteronism II caused by WNK4 mutation.

  • Pei-Yi Chu,
  • Chih-Jen Cheng,
  • Yi-Chang Wu,
  • Yu-Wei Fang,
  • Tom Chau,
  • Shinichi Uchida,
  • Sei Sasaki,
  • Sung-Sen Yang,
  • Shih-Hua Lin

DOI
https://doi.org/10.1371/journal.pone.0072969
Journal volume & issue
Vol. 8, no. 9
p. e72969

Abstract

Read online

Stimulation of the OSR1 (Oxidative stress-responsive kinase-1)/SPAK [STE20 (sterile 20)/SPS1-related proline/alanine-rich kinase]-NCC (Na(+)-Cl(-) cotransporter) signaling cascade plays an important role in the WNK [With-No-Lysine (K)] kinase 4 D561A knock-in mouse model of pseudohypoaldosteronism type II (PHA II) characterized by salt-sensitive hypertension and hyperkalemia. The aim of this study was to investigate the respective roles of Osr1 and Spak in the pathogenesis of PHA II in vivo. Wnk4 (D561A/+) mice were crossed with kidney tubule-specific (KSP) Osr1 knockout (KSP-Osr1 (-/-)) and Spak knockout (Spak (-/-)) mice. Blood pressure, plasma and urine biochemistries, and the relevant protein expression in the kidneys were examined. Wnk4 (D561A/+), KSP-Osr1 (-/-), and Spak (-/-) mice recapitulated the phenotypes of PHA II, Bartter-like syndrome, and Gitelman syndrome, respectively. Wnk4 (D561A/+).KSP-Osr1 (-/-) remained phenotypically PHA II while Wnk4 (D561A/+).Spak (-/-) mice became normotensive and lacked the PHA II phenotype. Phosphorylated Spak and Ncc were similarly increased in both Wnk4 (D561A/+) and Wnk4 (D561A/+).KSP-Osr1 (-/-) mice while phosphorylated Ncc normalized in Wnk4 (D561A/+).Spak (-/-) mice. Furthermore, Wnk4 (D561A/+).KSP-Osr1 (-/-) mice exhibited exaggerated salt excretion in response to thiazide diuretics while Wnk4 (D561A/+).Spak (-/-) mice exhibited normal responses. Wnk4(D561A/+).Spak (-/-).KSP-Osr1 (-/-) triple mutant mice had low blood pressure and diminished phosphorylated Ncc. Both SPAK and OSR1 are important in the maintenance of blood pressure but activation of SPAK-NCC plays the dominant role in PHA II. SPAK may be a therapeutic target for disorders with salt-sensitive hypertension related to WNK4 activation.