Water (Apr 2020)

Wetting Body Characteristics and Infiltration Model of Film Hole Irrigation

  • Fei-long Jie,
  • Liang-jun Fei,
  • Yun Zhong,
  • Li-hua Liu,
  • Shou-xuan Kang

DOI
https://doi.org/10.3390/w12051226
Journal volume & issue
Vol. 12, no. 5
p. 1226

Abstract

Read online

Film hole irrigation is a relatively low cost and high efficiency irrigation method, which can significantly improve the efficiency of agricultural water use. In order to establish the quantitative model of film hole irrigation between cumulative infiltration and the wetting body and the irrigation volume model of crops, the infiltration process and wetting body characteristics of four different soils (Xi’an silt loam, silt, silt loam and loam) were studied in laboratory experiments and numerical HYDRUS simulation experiments. The relationship between cumulative infiltration and wetting body radius was established using a mathematical method, and a crop irrigation volume model was proposed based on the root distribution and the required water content of different crops. The experimental results showed that the shape of the wetting body of film hole irrigation is approximately half of the rotating ellipsoid, and the curve shape of the wetting front can be expressed using an elliptic equation. From the center of the film hole to the surface of the wetting front, the soil water content of the wetting body gradually decreases, and the change rate of water content gradually increases, reaching its maximum value near the wetting front. Furthermore, the distribution of water content in the wetting body can be accurately expressed using an elliptic curve equation. The cumulative infiltration of film hole irrigation is proportional to the third power of the equivalent radius of the wetting body, and the equivalent radius is equal to the geometric mean of the horizontal and vertical migration distances of the wetting front. In addition, based on the distribution of crop roots and the demand of crop roots on soil water content, the irrigation model of crops was established. This study provides a theoretical basis for the calculation of the irrigation volume for film hole irrigation under the condition of experiment, and has a guiding significance for the field experiment and application of film hole irrigation in different crops in future.

Keywords