Regenerative Therapy (Mar 2024)

Fabrication of novel nanofiber composed of gelatin/alginate with zirconium oxide NPs regulate orthodontic progression of cartilage degeneration on Wnt/β-catenin signaling axis in MC3T3-E1 cells

  • Hua Zhao

Journal volume & issue
Vol. 25
pp. 308 – 319

Abstract

Read online

Natural macromolecules like alginate and gelatin are employed to create medication delivery systems that are both safe and effective. Zirconium nanoparticles (ZrO2 NPs) have been proposed as a means of enhancing the alginate-gelatin hydrogel's physical and biological properties. This study combines the synthesis of the biopolymers gelatin and alginate nanofibers with nanoparticles of zirconium oxide (GA/NF– ZrO2 NPs). UV, XRD, FTIR, and SEM were used to characterize the synthesized nanofibers. The expression of osteogenic genes was analyzed by western blotting and qualitative real-time polymerase chain reaction (qRT-PCR). Based on our findings, MC3T3-E1 cells are performed for cell viability, apoptosis and reactive oxygen species production by GA/NF– ZrO2 NPs through the Wnt/β-catenin signaling pathway. Cell migration was accelerated at 75 μg/mL concentration after 24 h of damage in a scratch wound healing assay. Proliferation of the MC3T3-E1 cell line was also detected. GA/NF–ZrO2 NPs influenced the osteogenic variation of MC3T3-E1 cells by inducing autophagy. Furthermore, the impact of obstruction on the temporomandibular joint (TMJ) is a subject of ongoing discussion and analysis within the context of animal models. Coordinated GA/NF–ZrO2 NPs on biomaterial nanofibers could be used to introduce physical signals for modifying MC3T3-E1 responds for orthodontic engineering constructs.

Keywords