Biosensors (Oct 2022)

Polydopamine-Functionalized Copper Peroxide/ZIF-8 Nanoparticle-Based Fluorescence-Linked Immunosorbent Assay for the Sensitive Determination of Carcinoembryonic Antigen by Self-Supplied H<sub>2</sub>O<sub>2</sub> Generation

  • Juanjuan Huang,
  • Yiyun Yao,
  • Yanling Chen,
  • Tianran Lin,
  • Li Hou,
  • Dianping Tang

DOI
https://doi.org/10.3390/bios12100830
Journal volume & issue
Vol. 12, no. 10
p. 830

Abstract

Read online

Copper peroxide/zeolitic imidazolate framework/polydopamine nanoparticles (CP/ZIF-8/PDA)-based fluorescence-linked immunosorbent assay (FLISA) was designed for the sensitive and high-throughput determination of carcinoembryonic antigen (CEA) by self-supplied H2O2 generation. Specifically, the CEA aptamer was modified on the surface of CP/ZIF-8/PDA to form an immunoprobe. The structures of CP and ZIF-8 could be broken under acidic conditions, and produced the Cu2+ and H2O2 due to the dissociation the CP. A subsequent Fenton-type reaction of Cu2+ and H2O2 generated hydroxyl radical (·OH). o-phenylenediamine (OPD) was oxidized by the ·OH to form 2, 3-diaminophenazine (DPA) with a significant fluorescence signal. CP/ZIF-8/PDA could be used as an efficient Fenton-type reactant to generate a large amount of ·OH to promote OPD oxidation. The sensitive detection of CEA could be realized. Under optimal conditions, the FLISA platform displayed a linear detection range from 0.01 to 20 ng mL−1 with a detection limit of 7.6 pg mL−1 for CEA. This strategy has great application potential for sensitive and high-throughput determination for other biomarkers in the field of biomedicine.

Keywords