Remote Sensing (Feb 2021)

The Regenerative Potential of Managed Calluna Heathlands—Revealing Optical and Structural Traits for Predicting Recovery Dynamics

  • Carsten Neumann,
  • Anne Schindhelm,
  • Jörg Müller,
  • Gabriele Weiss,
  • Anna Liu,
  • Sibylle Itzerott

DOI
https://doi.org/10.3390/rs13040625
Journal volume & issue
Vol. 13, no. 4
p. 625

Abstract

Read online

The potential of vegetation recovery through resprouting of plant tissue from buds after the removal of aboveground biomass is a key resilience strategy for populations under abrupt environmental change. Resprouting leads to fast regeneration, particularly after the implementation of mechanical mowing as part of active management for promoting open habitats. We investigated whether recovery dynamics of resprouting and the threat of habitat conversion can be predicted by optical and structural stand traits derived from drone imagery in a protected heathland area. We conducted multivariate regression for variable selection and random forest regression for predictive modeling using 50 spectral predictors, textural features and height parameters to quantify Calluna resprouting and grass invasion in before-mowing images that were related to vegetation recovery in after-mowing imagery. The study reveals that Calluna resprouting can be explained by significant optical predictors of mainly green reflectance in parental individuals. In contrast, grass encroachment is identified by structural canopy properties that indicate before-mowing grass interpenetration as starting points for after-mowing dispersal. We prove the concept of trait propagation through time providing significant derivates for a low-cost drone system. It can be utilized to build drone-based decision support systems for evaluating consequences and requirements of habitat management practice.

Keywords